THE INFLUENCE OF LAYOUT STRUCTURE ON SOLAR CELLS’ CURRENT EFFICIENCY FOR IMPLANTED SUBRETINAL PROSTHESES

Chung-Tao Yang
Chung-Yu Wu

Institute of Electronics and Department of Electronics Engineering
National Chiao Tung University
Hsinchu, TAIWAN
I. Background

Motivation

- **Enter the laboratory**
 - We’re interesting in biomedical electronics, especially implanted subretinal prostheses.

- **Improve and design solar cell**
 - Study how the layouts influence on the efficiency of the solar cell.
II. Different structure of layout

- Structure #1 (Same Ndiode)
 - TSMC 65nm process
 - Total area (μm^2) 27291.0968
 - Efficient exposed area (μm^2) 12672
 - Availability(%) 46.4

- Structure #2 (Inside contact diode)
 - TSMC 65nm process
 - Total area (μm^2) 23256.772
 - Efficient exposed area (μm^2) 12150
 - Availability(%) 52.2
II. Different structure of layout

- **Structure #3 (Common contact 15*15 diode)**
 - TSMC 65nm process
 - Total area (μm^2): 20,715.843
 - Efficient exposed area (μm^2): 12,519.27
 - Availability (%): 60.43

- **Structure #4 (Wild contact diode)**
 - TSMC 65nm process
 - Total area (μm^2): 28,826.23
 - Efficient exposed area (μm^2): 12,523.4835
 - Availability (%): 43.38
III. Results

Up : current/efficient exposed area ; Down : current/total area (A/\text{um}^2)

<table>
<thead>
<tr>
<th>Light Source</th>
<th>Structure</th>
<th>Same Ndiode</th>
<th>Inside contact diode</th>
<th>Common contact 15*15 diode</th>
<th>Wild contact diode</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR</td>
<td></td>
<td>1.63e-11</td>
<td>2.07e-11</td>
<td>2.11e-11</td>
<td>2.29e-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.60e-12</td>
<td>1.08e-11</td>
<td>1.28e-11</td>
<td>9.93e-12</td>
</tr>
<tr>
<td>Red</td>
<td></td>
<td>9.78e-12</td>
<td>1.11e-11</td>
<td>9.90e-12</td>
<td>1.10e-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.51e-12</td>
<td>5.79e-12</td>
<td>5.98e-12</td>
<td>4.77e-12</td>
</tr>
<tr>
<td>Blue</td>
<td></td>
<td>2.78e-11</td>
<td>3.18e-11</td>
<td>2.79e-11</td>
<td>3.25e-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.29e-11</td>
<td>1.66e-11</td>
<td>1.69e-11</td>
<td>1.41e-11</td>
</tr>
</tbody>
</table>
IV. Conclusion

- **Wild contact diode** has the greatest value of “current/efficient exposed area.”
- **Common contact 15*15 diode** has the greatest value of “current/total area.”
- We expect the improved availability of each structure:
 Same Ndiode: 59.12%, Common contact 15*15 diode: 71.79%
 Inside contact diode: 58.2%, Wild contact diode: 63.5%
- If we fix the total area, with the improved availability,
 Same Ndiode is apparently the worst structure of all, while other structures have similar results.